
Determination of the metric tensor from components of the Riemann tensor

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1981 J. Phys. A: Math. Gen. 14 2331

(http://iopscience.iop.org/0305-4470/14/9/027)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 14:47

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/9
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys A: Math. Gen. 14 (1981) 2331-2338. Printed in Great Britain 
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Zealand 
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Abstract. An algebraic method is presented which shows how to determine the components 
of the metric tensor g,,, up to an arbitrary conformal factor, from a given set of components 
of its Riemann tensor RPvaP in some coordinate frame. This procedure follows and 
generalises one given by Ihrig. Since the computations are purely algebraic and are carried 
out at a point in the manifold, no differentiability or continuity conditions are assumed. A 
number of examples are given to illustrate the technique. Although in general the method 
determines the metric up to one arbitrary scalar, the conformal factor, in a number of cases 
either one or three other arbitrary scalars arise. However, these latter cases are rare, and 
the form of the Riemann tensor for such cases have been listed elsewhere. 

1. Introduction 

An algebraic method for constructing the components of the metric tensor g,,, up to a 
conformal factor, from the components of its corresponding Riemann tensor RClVap in 
some coordinate frame from the identity 

has been given by Ihrig ( 1 9 7 5 ~ ) .  The procedure works at a point in an n-dimensional 
Riemannian or pseudo-Riemannian manifold only in those cases where, in Ihrig's 
language, the Riemann tensor is total at that point. The emphasis in this paper is on 
space-times, so that the theory discussed and the examples given are for four- 
dimensional pseudo-Riemannian manifolds. However, the comments here could be 
extended in obvious ways to the more general cases. 

The method also works for any fourth-order tensor of type (1,3) which possesses the 
skew symmetry represented by the identity (1.1). Thus it works for a given set of 
components of the Weyl tensor, and some theorems on the Weyl tensor similar to 
theorems on the Riemann tensor given in related papers can be easily written down. 
Generalisations can also be made to tensors of other orders which satisfy equations 
similar to (1.1). 

The curvature 2-forms nab of a space-time are defined in terms of the tetrad 
components Rabcd of the Riemann tensor by 

where the 8" are basis 1-forms. The requiremen't that the Riemann tensor be total is 
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equivalent to the requirement that the bivector space which spans the curvature 
2-forms has dimension six. This requirement was shown by McIntosh and Halford 
(1981) to be unnecessarily strong in that the algebraic equation 

X , ( v R c L * ) a P  = 0, X [ , u l =  0 (1.3) 

x,u = 4gww (1.4) 

admits only the trivial solution 

where q5 is an arbitrary scalar, whenever the dimension of the bivector space is four or 
more. This is equivalent to saying that, at a point, the only algebraic equation of the 
form (1.3) satisfied by the Reuap in these cases is the identity ( l . l ) ,  which merely says 
that RcLUaP = -RvcLap. But, as discussed by Hall and McIntosh (1981), even this 
requirement is too strong-it can be weakened to the following: The equation (1.3) 
admits non-trivial solutions (i.e. not of the form (1.4)) when either ( a )  there is at least 
one (null or non-null) vector V which satisfies 

V,R = 0 ,  (1.5) 

or ( b )  the curvature 2-forms are spanned by two bivectors 

eo A e' ,  e2 A e3 ,  
where the 8" are orthogonal vectors with eo timelike and the 8'(i  = 1 ,2 ,3 )  spacelike. 
The dimension of the bivector space which spans the curvature 2-forms is three if there 
is one vector which satisfies equation (1.5), or one if there are two such linearly 
independent vectors. There cannot be three such independent vectors satisfying (1.5) 
unless the space-time is flat. 

It is to be emphasised that the method under discussion for determining the 4g,, 
from the R cLwap is used at a point. Hall and McIntosh (198 1) have remarked upon this to 
the effect that the holonomy group of the manifold may not necessarily play a role in the 
process. However, the holonomy group has been introduced into the discussion of 
equations (1.3) and (1.4) by Hlavatg (1959a, b, 1960) and Ihrig (1975a, b, 1976), who 
assumed appropriate differentiability conditions and commented on physically relevant 
cases. 

The derivation of the qhg,,, from a given set of RCLUup by using Ihrig's construction 
appears to be very involved. In practice it is very simple and can be extended easily to 
the exceptional cases in which the q5g,, are given by (1.1). The first four examples in the 
next section show how the construction and its extension can be used to generate 
space-time metrics from Riemann tensor components. The metrics concerned are: 

( a )  the Schwarzschild metric, in which case $g,, is given explicitly from the R ; 
( b )  the vacuum Petrov type Npp-wave metric (2.9), when (1.1) gives q5g,,, +cd,lV, 

where I is a repeated principal null vector of the Weyl tensor and a is a second arbitrary 
scalar; 

(c) the vacuum Petrov type N plane-fronted wave metric with rotation, (2.21) with 
q5 = 1, in which case 4g,, is again not given by (1.1). However, in this case if the 
covariant derivative components R cLyup;v are known, then the identity 

g , ( u R c L A ) a p ; y  = 0 (1.7) 

can be used together with (1.1) to give g,, up to a conformal factor; 
( d )  a metric whose curvature 2-form is spanned as in (1.6). 
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The difference between ( b )  and (c) is that, with differentiability assumed, the 
dimension of the bivector space of the Riemann tensor and its derivatives in (c) is six, 
while in ( b )  it is only two. This is apparent from the work of Goldberg and Kerr (1961), 
who, in discussing the role of the holonomy group, showed that the group dimension is 
two in case ( b )  and six in case (c). However, in case (c) the holonomy group is imperfect 
because the dimension of the bivector space of the Riemann tensor alone is less than 
six-indeed it is only two. 

A fifth example shows an attempt to use Ihrig’s method when the Riemann tensor 
components are not those of a metric. The case considered is that of Newtonian gravity 
for which there is no four-dimensional metric. 

2. Method and examples 

Before detailing the examples, we outline the steps involved in Ihrig’s method and our 
extension of it. 

Method. Consider a vector space X spanned by ten orthonormal vectors x,, = xu, 
with the inner product 

Greek indices range over 0 , 1 , 2 ,  3. 

as possible from 
Step 1 : In X form as many linearly independent vectors 0, (a  = 1 ,2 ,  . . . , m ; m S 9 )  

rLx,(vR @*)ape (2.2) 

Here 4 is an arbitrary scalar function. The lengths of these v,  are not important, and so 
I) is chosen to give the v,  simple forms as linear combinations of the x,~.  

Step 2: Write down the most general vector w in X which is orthogonal to the 
vectors U,. In practice w can have one, two or three arbitrary functions in it, although 
usually it has only one. 

Step 3: Calculate the metric components from the inner product 

A g , u  =(U, x,v), (2.3) 

where A is an arbitrary scalar. 

Example 1. The Schwarzschild metric. Given the Riemann tensor components 
1 

1 1 2  2 

R0220 = R 221 = $R3232 = mp, 

R 0 3 3 0  = R 331 = zR 323 = mp sin 8, 

R2112 = R3113 = $Rolol = mp3A-’, 

R2020 = R 030 = 2R 001 = mp3A, 3 1 1  

R”,p, =-RPvap, 

(2.4) 

where 

xW = 0, r, 8, cp), P = l / r ,  A = 1 -2mp, (2 .5 )  

it is now a matter of looking at values of vAap in (2 .2)  to find as many linearly 



2334 C B G McIntosh and W D Halford 

independent vectors va as possible. For instance, for vAaP = 0101 we find 

vi  = rLbooROioi +xiiR’ooi). 

Choose + so that, for example, 

v1 = A - ~ ~ ~ ~ + A X ~ ~ .  

Similarly (2.2) yields 

U 2  = xo1, U 3  = xo2 ,  U4 = x 0 3 ,  

U5 = x12, 0 6  = x13, U7 = x 2 3 ,  (2.6) 

us = A - 1 ~ o o + p 2 ~ 2 2 ,  2 2 v9  = A-lsin 8xOo+p x33. 

Notice that is is useful to find a vector like v 2  = xol early in the calculation since the U, 
can be chosen to be orthogonal and thus any xol term can be omitted from all other 
vectors ua. The construction ensures that, with one of the va proportional to a single 
term xol,  the final form of the metric will have go1 = 0. The vector in X which is 
orthogonal to all the vQ in (2.6) is 

o = ~ x ~ ~ - ~ - ~ x ~ ~  -rr2(x22+sin2 8x33). 

Equation (2.3) now gives 

ds2 = #J[-Adt2+A-’ dr2+r2(d02+sin2 8 dq’)]. 

The arbitrary scalar #J can now be found from the Riemann tensor components by 
differentiation, provided that the differentiability conditions can be satisfied. It can also 
be found from the Bianchi identities; see Ihrig (1975b). 

Example 2: The vacuum pp-wave metric. This has the form 

d s ’ = [ F ( ~ , ( ) + P ( u ,  l ) ] d ~ ~ + 2 d u  d u - 2 d l d E  (2.9) 

where F is an arbitrary complex function of its arguments. With coordinates x F  = 
(U, v, (, f ) ,  the only non-zero components of the Riemann tensor are 

R 1 2 0 2  = -R 220 = R 002 = -R30z0 = T F , ~  (2.10) 1 3 1 

and their complex conjugates (obtained by interchanging indices 2 and 3). Suppose we 
are given the RNUap as in (2.10). Then a calculation similar to that in example 1 gives 

0 1  = xO1 fX23,  (2.11) 

and u2 to v8  equal to X O Z ,  ~ 0 3 ,  x l l ,  x12, ~ 1 3 ,  x 2 2  and x33. Then the vector orthogonal to all 
of these va is 

=ffxOO+p(xOl-x23), (2.12) 

and equation (2.3) gives 

ds2 = #J (du dv - d( df) + CC, du2, (2.13) 

where 4, $, a and p are arbitrary scalar functions. Another way of interpreting (2.13) 
is to say that, for this metric, the only possible solutions of (1.3) are 

(2.14) x,u = &,” + ff L J V ,  
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where 1 = a /av  is the repeated principal null vector of the Weyl tensor formed from 
(2.9). This result is due to Collinson (1970). 

Example 3. The vacuum type N plane-fronted rotating metric. The only non-zero 
independent components of the Riemann tensor are 

(2.15) 1 R1220= -i(U[2-2U,&+9~2Lj4), R1330=R 220,  

1 
R1ozo = 2v5R ‘ 2 2 0 ,  R3020 = 2R 220, 

R2030 = 2R1330 1 R1030=R 020, 

together with RlZo2, etc. Here x ”  = (U, v ,  5, f )  and 

(2.16) 

where F is an arbitrary complex function of U and 5. As in the previous example, the 
actual form of RIzzo is unimportant since it does not appear in the form of the gpv. A 
calculation of the kind outlined before gives 

U1 = v&Ol fx03, U 2  = xoi 2x23, ~3 = ~[xoi +xoz, (2.17) 

and u4 to 1)s equal to xll, x12, x13, x22 and x33. Then 

w = ax00 + p[-2xOl+ 2v5(x02 + x03) + x231 (2.18) 

and (2.3) gives 

ds2 = 4[2 du du - 2 ~ 5  du (d5 + df) - d l  df] + IC, du2, (2.19) 

where 4, IC,, a and p are arbitrary scalars. Again an interpretation along the lines 
surrounding (2.14) can be made. 

In this example and the previous one the bivector rank of the Riemann tensor is two 
and the metric is given algebraically up to two arbitrary functions. However, in the 
present example if the derivatives R”,,p;y are known, then (1.7) and an obvious 
extension of the method yield 

U9 = xoo + 2( U + 2V25*)XO1 (2.20) 

from which U can be found and hence Ag”,. Then 

d s 2 = 4 ( 2  du dv -2Udu2- \d f+2v t  dUI2), 

where U is given by (2.16), 

(2.21) 

Example 4. One example of the Riemann tensor being spanned by two bivectors of 
the type (1.6) is given by 

(2.22) 

where K1 and KZ are constants. These arise from the metric 

ds2=2(1+K1Uo)-2 du dv-2(1+K25f))-2 d / d f  (2.23) 

(see McIntosh and Halford 1981, P 7 (vi)). Algebraically (2.22) and (1.1) give, for both 
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K1 and K2 non-zero, 

d s 2 = 4  du d v + $ d l d E  (2.24) 

where $I and rC, are arbitrary scalars. On the other hand, if K1 = 0 and KZ # 0 in (2.22), 
then (1.1) gives 

(2.25) 

where a, p, y and I) are arbitrary scalars. In this particular case the Riemann tensor is 
spanned by one bivector, and four arbitrary scalars arise in the construction. This is the 
largest number of arbitrary scalars which can occur. A similar situation exists if KZ = 0 
and K1 f 0. 

ds2 = a du2+/3 du dv + y dv2+rC, d l  df; 

Example 5. Newtonian gravity. On a four-dimensional manifold with coordinates 

(2.26) 

x'* = (l, x i )  ( i  = 1 , 2 , 3 ) ,  the equations which govern this theory are 

d2Xi/dt = -8p/axi 3 -p,i, 

where cp is the potential function satisfying p,rl = 4 r p .  The non-zero components of the 
Riemann tensor are thus 

R'olo= -R'oo, =(P,~~. (2.27) 

It will now be shown by using the method outlined above that these components do not 
specify a non-degenerate four-dimensional metric. The non-zero expressions (2.2) are 
now twelve vectors in X :  

( P , l l x & l  +p ,21X&Zf(P,31Xfi3 ,  

p ,12x ,1+ (p,22x,2+ ( p , 3 2 x ~ 3 ,  (2.28) 

p,13xp,1 f ( P , 2 3 X p 2 +  (P333X~39 

for F = 0, 1, 2, 3. But of course these are not linearly independent. Provided that there 
are sufficiently many independent P , ~ ~ ,  the vectors in (2.28) with ,U = 0 span the xol, x o 2 ,  

~ 0 3  subspace. Thus v1, u2 and v3 can be written as xol, xo2 and ~ 0 3  respectively. Similarly 
the remaining vectors in (2.28) allow 04 to 0 9  to be written as X I I ,  XIZ,  x 1 3 ,  XZZ, x 2 3  and 
x33 respectively. Notice that xoo does not appear in any of these expressions since there 
are no non-zero components RgVap with p = 0. The requirement that the tenth vector 
w in X be orthogonal to these 0, would now give w = xoo and then (2.3) would yield 
ds2 = $ dt2. In the cases where there are not sufficiently many Q,~, for this analysis to 
hold, this method would still give rise to degenerate metrics. 

3. Comments 

It is obvious from the first four examples that (1.1) yields g,,, up to a conformal factor, 
from a given set of R lLvap almost always. The exceptions occur when the dimension of 
the bivector space of the curvature 2-form is three or less, and either there are one or 
two vectors V which satisfy (1.5) or else the curvature 2-form is spanned by two 
bivectors of the form (1.6). It is clear from the examples, and can obviously be shown in 
general, that: 

(a) if there is one vector V which satisfies (1.5), then (1.1) determines the metric up 
to two arbitrary scalars (cf examples 2 and 3); 
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( b )  if there are two vectors V which satisfy (1.5), then (1.1) determines the metric 
up to four arbitrary scalars (cf example 4, equation (2.25)); 

(c) if the curvature 2-form is spanned by two bivectors of the form (1.6), then (1.1) 
determines the metric up to two arbitrary scalars (cf example 4, equation (2.24)); 

( d )  if none of the conditions (a) - (c)  holds, then (1.1) determines the metric up to 
one arbitrary scalar, a conformal factor (cf example 1). 

These aspects are further discussed by Hall and McIntosh (1981) and by McIntosh 
and van Leeuwen (1981). 

It is also obvious that in the method of Ihrig (1975a) as modified in this paper the 
dimension of the vector space spanned by the ua found from (2.2) is eight, six, eight and 
nine respectively in the cases (a ) - (d )  just mentioned. It cannot be less than six except in 
flat space, in which case it is zero. The number of arbitrary scalars in the coefficients of 
the most general vector cr) orthogonal to the U, in each case is thus two, four, two and 
one respectively. This number is then the same as the number of arbitrary scalars in the 
metric. 

Equation (1.3) with 

X,” = tb,”) (3.1) 
is a necessary condition that a metric admit a curvature collineation, i.e. a vector field 8 
such that 

2s wLyup = 0, (3.2) 
where 2 denotes the Lie derivative. 

For the majority of space-times none of the conditions (a) - (c)  holds, (1.3) gives 
x,, = dg,,,, and any curvature collineation is a conformal motion-see McIntosh 
(1981). The metrics in examples 2 and 3, however, always admit non-trivial curvature 
collineations; see Halford et a1 (1980) and the references given in that paper. 

as discussed in § 2 
could in principle be carried out on a computer. A program to do this would probably 
follow Ihrig’s (1975a) approach more closely. However, it is easy for the human eye to 
pick out a set of linearly independent vectors from the 96 given by (2.2) and rather 
wasteful to turn to a machine for this task. We hope that § 2, when followed through in 
practice, will convince the reader of this. 

One can imagine gedanken experiments for determining the components of the 
Riemann tensor in some frame, Experiments along this line are discussed by Pirani 
(1965) and Szekeres (1965). The method of 0 2  then gives in most cases the cor- 
responding metric components up to a conformal factor. 

The method of obtaining the components hg,,  from the 
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